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Because both doublet radicals and group 14 divalent compounds1

are usually reactive intermediates, reactions between these electron-
deficient species have been very poorly studied. The reaction of
triplet diphenylcarbene with a persistent nitroxide radical such as
2,2,6,6-tetramethylpiperidineN-oxide (TEMPO) was found by
Scaiano and co-workers2 to be very fast, giving benzophenone and
2,2,6,6-tetramethylpiperidine; the second-order rate constant was
2.7× 108 M-1 s-1 in acetonitrile at room temperature. Despite the
fundamental importance, the reactions between doublet radicals and
heavier group 14 divalent species with singlet electronic configu-
ration have not been investigated thus far. We wish herein to report
the characteristics of the reactions of TEMPO with stable metal-
lylenes1,3 2,4 and3.5

The reactions of germylene2 and stannylene3 with 2 equiv of
TEMPO gave the corresponding 1:2 adducts4 and5, respectively
(eq 1).6,7

Molecular structure of adduct4 determined by X-ray crystal-
lography8 is shown in Figure 1. The Ge-C bond distances are
slightly longer than those of germylene2 (2.010 and 2.020 Å).4

The Ge-O bond distances are significantly lengthened compared
to a typical Ge-O bond distance (1.76 Å),9 probably due to the
steric congestion around the germanium atom, while the N-O bond
distances are within those reported for N-O(Ge) bonds.10 For the
details of X-ray structures of4 and 5, see the Supporting
Information.

The reactions of2 and3 with TEMPO are easily understood by
the stepwise addition of TEMPO to2 and3 via intermediary radicals
6 and7, respectively (eq 2).

The rate profile of the reaction of TEMPO with germylene2
was investigated in more detail. Even though the reaction was
performed using a large excess amount of TEMPO, no ESR signals
due to germyl radical6 were observed. The result indicates that
the rate for the second step (k2) is much faster than that of the first
step (k1) to allow the use of the steady-state approximation for
intermediate radical6. The decay of TEMPO monitored by ESR
spectroscopy obeyed pseudo-first-order kinetics with rate constant
kobs (eq 3), when the initial concentrations of2 were ca. 20 times
larger than those of TEMPO. Second-order rate constantk1 was
determined as a half of the slope of a linear relationship between
kobs and the initial concentrations of2.

Rate constantk1 for the addition of TEMPO to germylene2 was
determined to be about 1.5× 10-2 M-1 s-1 at 274 K. From the
temperature dependence ofk1, the activation parameters were
determined as follows:∆Hq ) 9.7 ( 0.5 kcal mol-1 and∆Sq )
-32 ( 2 cal mol-1 K-1. Rate constantk2 for the second step was
not determined in the present reaction but was supposed to be quite
large. While usual radical coupling rates range in solution between
109 and 1010 M-1 s-1, the rates have been reported to be 7.2× 108

and 3.4× 108 M-1 s-1 for the reactions of TEMPO with Bu3Ge•
and Ph3Ge•, respectively.11 On this basis,k1 is estimated to be about
1010 times slower than the second step.12

The observed huge difference betweenk1 andk2 is interesting
but would be explained as a consequence of a simple perturbation
theory. The second step, a radical-radical coupling, involves a
SOMO-SOMO interaction between two radicals (two-electron
interaction) resulting large stabilization of the system, and hence,
the reaction rate is usually close to that for a diffusion-controlled
reaction. On the other hand, because germylene2 has a high-lying
nonbonding HOMO and a low-lying pπ LUMO, the important

Figure 1. Molecular structure of4. Hydrogen atoms are omitted for clarity.
Selected bond length (Å) and angles (deg): Ge1-O2 1.824(2), Ge1-O2
1.826(2), Ge1-C1 2.060(3), Ge1-C4 2.056(4), O1-N1 1.483(4), O2-
N2 1.480(4), O1-Ge1-O2 115.7(1), C1-Ge-C4 95.0(1), Ge1-O1-N1
126.9(2), Ge1-O2-N2 127.1(2).

-
d[TEMPO]

dt
) kobs[TEMPO] ) 2k1[2][TEMPO] (3)

Published on Web 07/11/2003

9300 9 J. AM. CHEM. SOC. 2003 , 125, 9300-9301 10.1021/ja0356784 CCC: $25.00 © 2003 American Chemical Society



orbital interaction between TEMPO and2 during the first step
should involve either a SOMO-HOMO (three-electron) interaction
or a SOMO-LUMO (one-electron) interaction depending on the
direction of the approach of the two substrates.13 The stabilization
energy for each interaction is much smaller than the SOMO-
SOMO interaction, which makes the first-step reaction much slower
than the second radical coupling reaction.13

Interestingly, 1,3-dioxadisiletane derivative8 was obtained in
66% yield together with 2,2,6,6-piperidine (9, 71%) during the
reaction of1 with 1 equiv of TEMPO in benzene (eq 4).15 Even
when a large excess amount of TEMPO was used, a 1:2 adduct, a
silicon analogue of4 (or 5), was never produced.

Dioxadisiletane8 will form via a cleavage of the N-O bond of
an initial radical adduct10, giving silanone1116 followed by the
dimerization (eq 5).

Radical10 is suggested to undergo preferably a unimolecular
N-O bond cleavage rather than an expected coupling with TEMPO,
in contrast to the corresponding germanium and tin radicals (6 and
7). In agreement with this explanation, theoretical calculations for
model reactions (eq 6) at the B3LYP/6-311+G(2d,p) level showed
that the reaction for M) Si is slightly exothermic with∆E ) -2.0
kcal mol-1, while the reaction for M) Ge is highly endothermic
with ∆E ) 13.8 kcal mol-1. Further works are in progress.
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